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-1; Abstract
Predicting the behavior of a qualitatively described
system of solid objects requires a combination of
gcomctrical. temporal. and physical reasoning. Methods
ased upon formulating and solving differential equations
are not adequate for robust prediction, since the behavior
of a svstem over extended time may be much simpler than
its behavior over local time. ;Fhis~paper discusses. a first-
order logic. in which one can state simple phivsical
problems and derive their solution deductively, without
recourse to solving the differential equations. This logic is
substantially more cxpressive and erful than any
previous Al representational system in this domain.
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2. Introduction

To operate effectively in an  uncontroiled
environment, an autonomous robot will have to reason
about, understand. and predict external physical events.
In many crcumstances. nowever, it will be necessary to
reason about physical events on the basis of partial
information: the objects involved may not be whoily
perceived, or the complete physical specifications may be
too complex to use, or the robot may nced to reason
about hvpothetical or zeneric situations. In such cases, the
robot wiﬂohave to reason qualitatively, inferring general
characteristics from incomplete knowledge. =~ Human
common sense is often very good at speedy prediction cf
physical cvents in qualitative terms: conventional
computational schemes are typically very poor at it.

Understanding solid objects is particularly important
in physical reasoning. and human beings are particularly
adept at thinking about solid objects. Our objective is to
builld an Al program that can rcason qualitatively about
solid objects and that can derive correct predictions about
their behavior in cases where these predictions are
intuitively obvious. This is harder than one might {irst
guess, owing to the many complex ways in which the
geometry of the cbjects affects their behavior.

As 3 first step toward building such a program. w
have analyzed the kinds of knowiedge neede% tg sup'pori
such reasoning. and we have defined a formal language L
‘n vhich this “ermal language can e expressed. Ve lave
snown that interesting problems can be soived
qualitatively by inference from plausible axioms expressed
in L. The language L is more cxpressive and supports
richer inferences than iny previous representation scgme
in this domain. We zive the tull d‘e)t:u'ls of L and its
applications in [i]: here. we give only a sketch.

In  concentrating on the representatio
formulation of knochdgc. and post;gning quct‘;omn?;rj’
algorithms or control structure. we follow Haves [2].

owcever, we depart from Haves' research program in
some respects. We do not attempt to model “naive”
physics: rather. we have made free use of Newtonian
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mechanics. including concepts that have no commoasense
analogue, such as total mechanical energy. Also, our
Froo s are lengthy, violating Hayes' dictum that obvious
acts should have short proofls.

The mathematics used here is not "qualitative™ in the
restricted sense of representing quantitics purely ia terms
of order relationships and constants [3]." Such a
representation is too weak to support the inferences
needed in this domain.

We have chosen two kinds of problems as foci for
our analysis; predicting what h ns when a die is
dropped inside a funnel (Figure 1) and what happens
when a block is dropped onto a table (Figure 2).
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Figure !: A die is released inside a funnel

Figure I: A block is relexsed onto 2 tacle.

Different forms of these problems involve 2 rich,
interconnected body of geometric and physical knowledge
for their solution. ‘This paper will focus primarily on the
die in the funnel” example. ’

3. Background

Several evious Al orcts have studied
ualitative vsics  of soh%r objects. Foz' elxamptlhcc
ahiman’s BUILD program [4] detérmined the stability of
a tower of polvhedral blocks. De Kleer's NEWTCN [5]
predicted the behavior of a point mass sliding on a
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constrain:. Bundy’s MECHO [] used force analysis and
conservation laws to make physical predictions in
situations of specialized format.” Forbus’ FROB [7]
predicted the behavior of a t meass ﬂyin%eamong
constraints. Funt's WHISPER?ginpredicted the behavior
of a collection of objects by simulating it in a retina-like
image. Novak's ISAAC [9] identified English-language
programs of fixed form, and applied ;recial case
cquations to them. Shoham [10] analyzed the local
mobility of an object within constraints.

All these programs provided valuable insights. They
were, however, limited ign geometrical cxprasgfity and in
the range of physics understood. Of these systems, only
BUILD dealt with three dimensions; and only MECHO
dealt with the motion of extended objects. Only a few
kinds of physical interactions were considered.

Another limitation of these
subtle, but more fundamentai; the
entirely on extrapolating differential b
prediction, the program first determined how each state
of the system will tend to change, and then extrapolated
these changes to predict a continual trend of change up to
the point that the structure of the system chan§5. i
extrapoiation could be done qualitatively, as in FROB and

“WTON, or symbolically, as in MECHO, or using
point-by-point simulation, as in WHISPER, or by
numerical integration, as proposed by McDermott and
Bermnecky (personal communication).

For example, FROB [Zil predicts the behavior of a
bouncing ball in a well by dividing physical space into 4
regions (the interior of the welil, the bottom, and the two
sides), and dividing the velocity space of the ball into nine
{motionless, up, n, left, right, and the four
cﬁadrams.) (Figure 3) There are thus 27 possible states of
the system. (4 x 9 - 9 impossible states). The laws of

hysics are then used to determine which transitions

tween states are allowed. and thus a transition graph of
states is developed. FROB predicts that the system
follows a path in this transition graph. ending in a stable
state of rest.
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Figure 3: Discretized space and velocity in FROB

However extrapoiaticn is done, simulation s
inadequate for robust prediction. In this kind of analysis.
each different set of boundarv conditions is a different
svstem state. Sach such state must be separately Jdetected.
categonzed, and anaivzed. and the system's progress
through these states must be recorded. Often. however,
such 3 categorization is difficult and pointless. Consider
the problem in figure 1; a small die is released inside a
large steep funncl. Many states are possible: the die may
be in free-fall; it may be colliding or in continuous contact
with the top or bottom part of the funnel i:nnet on any of
cight vertices. twelve sides. or six faces; it may be
spinning, sliding, or rolling, up. down. or around the
funnel. But the prediction that the die comes out the
funnel does not require the enumeration of the states and
the paths through them.

There are two further arguments. First, the sequence
of states traversed depends delicately on the exact shapes,
sizes, and physical properties of the die and the funnel,
while the conclusion that the dic comes out the bottom is
Povameters. The If e mtoblom 15 speciticd with

eters. cfore, i cm is speci wi

some small degree of unpreasgn simulation will either
be impossible, or involve some monstrously branching
trec of possibilities. But in qualitative reascning the
prediction that the die comes out the bottom d be
almos: as easy with imprecise data as with isc.
Second, the complexity of simulation goes up rapidly with
the number of interacting objects. In figure 4, for
cxamgle. with one die inside another dropped inside a
funnel, the set of system states is the cross product of the
possible interactions of the two dice with the possible
interactions of the outer die and the funnel. Nonetheless,
the prediction that the two dice wil! come out the bottom
is intuitively almost as easy as witl, only one die.
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Figure 4: One die inside another released inside a funnel

In short, formulating and solving differential
equations is an inadequate technique in this domamn, since
the behavior of these physical systems over ex.ended time
is often easier o characterize than their behavior over
local time. A powerful physical reasoning system must be
able to infer the general quality of a course of cvents
from broad characterizations of the physical properties of
the objects involved, without calculating each subevent.

The programs cited do use some lechniques besides
simulation. MECHO and NEWTOCN use cnergy
conservation 10 prune possible system. behaviors. Any
state with more mechanical cnergy than the starting state
can be ruled out as 1 possibility in all {uture states: tor
example. the die cannot come out the top of the funnel.
FROB predicts ‘hat the system ends in 1 stable state. We
believe that effective qualitative reasoning requres more
inferences like these, and less use of simuiation.

A natural knowledge engineering approach would use
rules that state the desired predicuon, suwa s "A smail
object released inside a steep. large-mouthed funnel will
fall out the bottom.” But rules of this kind are inadequate,
and have rightlv been rejected by previous researchers.
Any single such rule covers only a small dass of
problems; covenng large classes of problems requires
many separate disconnected rules. In particular. 1 rule like
the one suggested above applies only when the die and the
funnel arc the only objects involved. As soon = another
object enters, the rule gives no guidance. That is, such
rules are not compositional icross objects. Even without
other objects. if we allow wide ranges in the shape of the




die and the funnel, the conclusion” will sometimes apply
and sometimes not. Since there is no simpleal%cncral rule
for when the die comes out the bottom, a diiferent rule
must be stated for each special geometric case.

Maintaining a knowledge base with many spectal case
rules is not effective. First, the knowledge base will have
to be large and inefficdent. Second, if a new case is not
precisely covered in pre-canned categories, the system
cannot even begin to with it. Third, this approach is
aesthetically distasteful. A well-designed system shouid
usc similarities anzr:jg different cases of a die falling
through a funnel. similarities between this problem
and similar problems, such as a die shot through a tube,
or a die dropped into a box. The analyses of t cases
ought to have more in common than the use of rules
which are syntactically similar. Finally, it seems plausible
that an integrated system of rules will support learning
better than a tabulation of special cases.

4. Examples and Analysis

We proj that the “die in the funnel” can be
analyzed as foliows: (i) Due to the topology of the funnel.
if the die zoes from inside it to outside it. the die must
either exit the top or exit the bottom. {ii) Since the die is
dropped from rest inside the funnel, 1t cannot have the
energy to exi- e top of the funne. (iii) There is no
stabfe resting point for the die inside the funnel, since it is
smaller than the funnel’s mouth. and the funnel’s sides are
stecp. (iv) The die cannot stay ‘orever moving within the
funnel. for its kinetic energy will eventually be dissipated.
Therefore, the die must 2xit the bottom of the funnel. ‘We
claim that in most cases where common sense predicts
that the die will come out the bottorn, it wiil be possible
1o carry out such an anaivsis. and to support the substeps
by inferences from gencral rules. Different problems will
vary in the ;usiifications of the substeps.

Related problems wuil share parts of the analysis. For
instance. in predicting that a1 die in a smalil-necked funnel
will come to rest at the top of the neck, we may use the
identical arguments (i) :nat the die must either exit the
top. exit the bottom. or stay inside; (i) that it cannot exit
the top: and {iv) that it ;annot s1ayv inside in a perpetual
state of motion. The argument {ili} that it cannot rest
stably inside the ‘unnei Tust be modified to an wrgument
that it can only rest stacly at the top of the neck of e
funnel: and ‘he aaditional arzument must be made that it
cannot exit the bottom of the funnel. since the onfice is
0o smail.

This analysis avoids both preblems discussed in
section 2. We can avoid :inalvsing, or even deterrunng,
the states of motion of the die inside the funnel: ail we
need to determine is that the die cannot rest stablv inside.
Different categories of problems are analvsed in simiiar
but not identical ways from general principies.

In the rest of this section. we look 1t vanations Jt
this exampie, and show how this analysis can be :ippited.

We begin wntd a simele case ifigure 3. The die s 3
smiform sphere. Tae funnel is the surface Of revoiution
2pout a vertical axis of 1 pianar ‘igure with 1 convex inner
side. The radius of the Jie :s less than the radius Of
revolution of the funnel. The steps of the argument ire
casiiv fled a1 The oo and Settem of the “ippel
the oniv onfices of free space connecting the inside of e
‘unnel with its outside. Therefore. if the die is to 20 from
inside to outside. it must go through :he top or ibe
bottorn. {ii) Since the die is spherical. its center of mass :s
in its intenior. Since the top of the funnei is horizontal.
ind directed upward. if the die were o exit it. 2ach point
in the interior of the die would be above the top of the
‘unnel at some ume. in parucular. the center of mass
would be above the top it some time. But the die started
out from rest beiow the top of the funnel, ind there :s no
source of additional energy for the die. Therefore. the die
cannot come out the top. iii) By 1 geometncal irgument,
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the die can only abut the inside of the funnel in a single
point. A uniform sphere can be stably supported at a
single point only if the supporting surtace is horzontal
there. The inner surface of the funncl is powhere
horizontal. Hence there is no resting place for the dic
inside the funnel.
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. Figure 5: A spherical die inside a radially symmetric Zunnel
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4.1. Qut the top, out the bottcm, or stay inside

We now consider how this argument =n be
generalized and modified. (Further modifications are
discussed in [1].) Part (i), that ths die must either =it the
top, exit the bottom, or stay insid . Joes not require that
the funnel be a solid of revolution: it requires oniv that
the funnel be a tube with only two onfices. W= can
weaken the condition further, and require only :hat all
orifices other than the top or the bottom be :00 smail to
let the die through. Determining whether 1 die =n go
through a hole is an easy geometric calculation {or various
special cases.

4.2. Not out the top

Part (ii), the argument {rom cnergy conservat.ca that
the die cannot come out the top. depends on the die deing
convex and on the center of mass cf the die starung out
below anv part of the top. Convexity is nly s2d to
sstablish that the center of mass of the cblect s n its
interior. If this can be done otherwise — for 2xarrie. by
exact calculation, or 5v establishing that the object :hape
is a small perturbation of a convex shape. — at is
sufficient.

A still weaker sufficient condition is hat the ~=nged
flling in of the die is convex. The nnged :lling a of a
‘three-dimensional shape 5 is defined s toilows: Censider
any pianar cross section of § . Let C be any simpie dosed
curve ihat lies sntireiy in this cross secticn. Let 2 e 3
soint ‘n the riane mn :ne inside of C. Then » s n the
zinged filling :n of §. Figure 5)

Let S be the shape of some of ect 0. ad let 2 %e the
Anged ‘illing n of 3. Assume R :s convex. Clearv. R is
<Qua 10 e weavex swil of £, so R contans e xnihir oI
mass of 0. Let C be 1 closed curve lying :n 5 xdin 2
olane containing the enter of mass of 0. If T joes
through 1 planar surface. then so does every point nside
C. Thus, iFO 2xits the top of the funnel. :hen ihe enter
of mass of O must ikewise, and the proof zoes rough.
Thus we can 2stablish step (ii) for such snapes as 2 lorus,
a3 wiffle bail, or 1 cratered convex shape.

4.3. No resting point inside
Part (iii). the argument that the Jie cannot rest :aside

the ‘unnel, depended in our first :xample on the strong




Torus T is cut by plane S

Cross section of T by S
Cis a curve in the cross section.
p s a point inside C.

Figure 6

assertions that the die was a uniform sphere and that it

could contact the funnel only in a single point. We can .

easily %cneralize to nearly uniform, nearlv spnerical dice.
The foilowing formula holds: let 9 be the siope of the
support; let p be the coetficient of friction: let & be the
maximum angle between the line fro:n the center of mass
to a point on the surface and the normal to the surface at
that point (Figure 7). The ball zan stand still only if
p=tan(8) and o>8. Similarly. if one die is a spherical
shell containing another die, they rest stably only if the
joint center of mass of the two dice is located directly
above the contact point of the outer die with its support.
and the inner die rests stably inside the outer die.

N is the normal to the surface.
< 1s the center »f mass.

lis a line through c.

3 is the angle between N and 1.

Sigure 7 Distorted <chere

.. If the die an contact the funnel in several points with
different surface normals. the analvsis becomes harder.
The wider the range of the 1onzontal compenent of the
surface normals at contact points. the steeper the slope
must be, for the normal forces at the vanous contact
pomnts will tend to act against cach other. ind thus
enerate larger ‘riction forces. The following rule holds:

t A be in contact with 8. Let 3 be the munimum s)
of the surface of B at 1 contact point. Consider og:
honzontal components of the surface normals of 8 at the
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contact points, and assume that there is some direction
which hes within some small angle & of all these
horizontal components. Let the coeflicient of frictios be
n. If p<cosdtand, then A will slide down B.

.. Combining all the different ways in which the resuits
(lzl,j (i), and (i) may be established, and all the ways in
which "their geometrical preconditions may be satisfied.
gives a rich, interconnected body of results, all with the
conclusion, "The die falls out the bottom of the funnel.

5. The Block on the Table

The behavior of the block on the table can be
analyzed using a similar argument. After the blox is
released, it will fall to the table, tipple over a bit, and
then move along the table in some combination of slidng,
bouncing, and rolling. (Figure 8). It can be estimated xow
tong it will take for the friction involved in sliding and the
inefasticity involved in bounc_mg' to consume all the energ
gained in the fall and the tipple, and how far the
can travel during that time. A similar estimation can be
made for roiling, as long as the object rolls sufficetly
poorly. If the surface of the table is uniform. and if oese
motions will not bring the block off the edge of the tavle,
then it can be predicted that the block will attain a stable
state of rest within the estimated time. and within the
estimated distance of the point of release.
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Figure 8: A block settling or a table

6. The Underlying Knowledge

6.1. Geometry

The arguments in section 3 used several differsnt
kinds of geometric knowledge. inciuding:
® The ability to name and descnbe particular point sets
that are connected to objects and are useful ‘or
physical reasoning, such as the rop and botrom % a
‘unnel. These are called “pseudo-cbjects” in our
system: the problem of constructing them effectvely
is the same as the problem of constructing memc
diagrams in FROB 3.
Topological predicates. For exampie, the {zmel
‘orms topologically a box with two orifices, and the
die starts out inside the box. [11]
The use of a property C R
irregularities of a certain kind in an object. For
‘nstance, the funnel has no hoies !.:ge enough 3 et
the die through other than the top bottom.
Special shapes. such as spheres and surfaces of
rotation.
Inequalities on metric dimensions. For example. the
radius of the die is less than the radius of the fumei. |
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® The bounding of the range of the surface normal over
a part of an object’s surface. For example. we wish to
say that the slgpc of the funnel is everywhere positive
in its inner surface.

o Convexity and related properties.

Any adequate geometric language will be strong
enough that these, or most of these, can be either
expressed directly or inferred.

6.2. Temporal Logic

Our temporal logic follows McDermott's [12]. A
scene is an instantancous snapshot of the universe. In our
domain, a scene specifies the positions and velocities of all
objects. A chronicle is a function from the time line to
scenes. Chronicles include all continuous motion of
objects through space, not just those that are physically
possible.

The velocity of an object at an instant is defined to be
the limit of its velocity from preceding time. Thus. we can
speak of the veloaty of an object at the instant of a
collision.

The “frame” or “persistence” Eroblcm of determining
what remains true over time {12, 13] docs not arise.
There are two classes of predicates in the domain. Tne
first class includes predicates thai depend on position and
velocity of objects. These are not assumed 0 remain
constant over any interval unless proven to Jdo so. The
second class includes structural prccﬁcatcs. depending only
on the shapes and material propertics of the objects.
These arc always constant over the problem. and <o are
defined atemporailv. (The closed world assumption is
made cxplicit through the predicate “isolated(00.C)".
which asserts that, during C. no mobile object in the set
of objects OO ever comes into contact with any object
outside 00.)

6.3. Physics

The world consists of 1 finite <et of solid objects
moving n space through tme. Objects are rigid and
indestructible.  The interior of objects may not overlap.
Obyects have two internal propertics hesides their shape: a
distripution of mass. ind a coerficient of elasticity. which
Jdetermines qow the oblect behaves in a coilision. Anv pair
of cbiects have 1 coefficient of friction. which determines
the frictive forces between the objects.

Objects are subject to four kinds of forces: a uniform
downward gravitational force: normal forces. which act to
prevent objects from overlapping: riction: and 1 weak
drag force. which dissipates Xinetic cnergy. Certain
objects are ;ixed: they do not move. whatever the forees.

Necessary physical deductions include the ‘ollowing:

® Determining whether 1 set of objects 2an :ttain a
stable scene while certwn zeometnic conditions Lold.

® Finding constraints on the location of the center of
mass oI an object or 1 set of obiects.

® Resolving 1 set of forces. ind letermining motion
dncer (aose fors. )

® Predicting that the cxisting structure of contacts
between objects will change.

® Predicting a coilision.

® Predictirg the result of a collision. i

® Determining hether a  caronicle  violates  a
conservation law.

® Charactenizing the paths that an obiect can take

without coming 0 :serlap other objects.
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7. Ontology

The ontology for our language requires 3 number of
sorts of individuals.

Quantities. Instants of time. quantities of mass.
quantities of energy. Thesc are modelled as real numbers.

s Points and vectors. These are modelled as elements of
R,

Point sets. Subscts of R>.

Vector fields. These are functions from some point
sets to the space of vectors. For cxample. the surface
normals to an object in a fixed position, directed outward.
form a vector field.

Rigid mappings. M

reserve distance and h
1n position.

General velocities. The derivative of a rigid map]ping.
A general velocity is the composition of a linear veloaty
and an angular velocity about a specified axis.

Objects. These arc primitive entities. The shape of an
object is the point set that it occupies in some particular
standard tion. This is assumed to be connected.
closed, and normal.

Scenes. A scene is a snapshot of the world. Formaily.
it is a function which maps an object to 2 pair of a ngd
mapping, giving the position of the object. ind a generd
velocity. The place of an object in a scene is image of the
object shape under the mapping associated with the object
in the scene.

Pseudo-cbjects. These are point sets that "move
around” with objects, like the holc of a doughnut, the
%pem'r;ﬁ of a bottie, or the center of mass of any objea.

ormally, a pseudo-object is a pair of a <ourcc_06)cct and
a point set, designating the point set occupied by the
pseudo-object when the object is in standard position. I3¢
place of a pseudo-object in a scene is tie image of .Is
shape under the .aapping issociated with its source obect
in the scene. )

Chronicles. A chronicle is a function ‘rom ar inten 2
of time to scenes.

All chronicles are subiect to the foilowing constraints:
i.  All scenes in the range of the chronicie have the sarce
objects in their demain.

Chbiects move continuously in space.

Obsect welocities are sontinuous {rom crevious times.
The veiocity of an object is the Jenvative of &5
position.

Chronicles do not have 1o be physicailv possible. We
use the predicate "phys-poss{C)" to disunzuish chronicles
that obey the laws of physics.

ings from R® to R which
edness. These specify a change

8. Axioms for Physical Reasoning

Bascd cn the above ontology. we have developed 3
flirst-order language L and a set of axioms adequate ‘0
solve the first "dic in the ‘unnel” cxampie. The completz
analysis is rather lengthy: the language uses about mnety
non-logical erms. not including the stancard arithmen:
operators, and the analssis involves about 140 axioms
Most tover two thirds) o the terms ind axioms uire
purciy zeometnical: the fest relate ‘o meuon and 3
physics.” We zive befow three sample ixioms. and e
compicte statement of the “die in the funnei” example. =
tllustrations.

Geonretne Axiom: Smoothness and the value of the
surface normal are locad properties of the boundary
Specifically. :f two bodies share part of eir boundary.
then. at any intertor point of the overlap. ore is smoon
iff the other is smooth. and their surfze normals are
erther paralle! or anti-parzilel.



[ body(XX1) * body{XX2) -
XXA C boundary(XX1) () boundary(XX2) -
X €interior(XXA) - smooth(XX1.X) | >

[ smooth(XX2 X)
surf-norm(XX2 X)

[ surf-norm%ﬂ( 1 .Xg
surf-norm(XX1.X) = —surf-norm{XX2.X) ] |

Axiom of Motion: If an object O has zero velocity in
every scene of a chronicle C. then it stays in the same
place throughout C.

V¢ S<scenes(C) > velocity(05) = 0] »
V152 Sl€scenes(C) - S2éscenes(C) >
mapping(S1.0) = mapping(52.0) | |

Physics axiom: The energy of an isolated set of
objects OO never increases in a physically possible
chronicle C.

[ phys-poss(C) - isolated(00.C) - TI<T2 ] >
encrgy(0O0,scene(C,T1)) = energy(CO.scene(C,T2))

Problem statement: Consider a spherical die, and a
radially symmetric funnel. Assume that the inner radius
of the funnel is greater than the radius of the die: and that
the inner side of a radial cross section of the funnel is
convex. If the dic is relcased inside the funnel, and the
funnel is held fixed far from ihe ground. then the die will
eventually fall out the bottom of the funnel.

Constants of the example:
odie — the die
ofunnel — the funnel
¢ — the chronicle
xx-pfunnel — the planar form from which

the funncl is generated

xx-center-line — the axis of the funnel
xeenter — a point on the axis of the funnel

Assumptions:

sphere(shapetodie)).
(The die is 4 sphere.)

mobile(odie).
{The Jic is nct fixed.}

shapetofunnel) =

solid-of-revoiution{ xx-prunnel . xx-center-line).

( The tunnel is the solid of revolution of xx-pfunnct
around xx-center-line. )

p'anar{xx-pfunnel | j <x-center-line).
(xx-pfunnel is a radial cross saction of the funnel.)

convex-sidetinner-dsidet xx-prunnei.xx-centerline).
xx-pfunnel).

{The inner boundary of xx-pfunnei with respect to

xx-center-line is convex. )

distance( xx-pfunnel xx-centerline! > radiusiodic) > 4.
i The radius of the funnet is greater than the radius of the
die.)

w-xenterline = make-inet xeenter vup.
{ The axis of the funnel is verucal.)

standard-position(ofunnel.startscene(c)).
(The funnel is ortented in standard position.)

fixed(ofunnel).
{ The funnel is fixed.)

isolated({odie.ofunnel.oground}.c).
(The die is isolated from everything but the funnel and
the ground. "}

Las
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XF €sha (ofunn_clz‘ - XG €shape(oground) >
height(XF) — height(XG) > diameter(odie)

(The funnel is more than the diametcr of the dic above
the ground.)

infinite(c).
(The chronicle is eternal. )

hvs-poss(c).
F‘lhc chronicle is physically possible.)

motionless(odie startscenc(c)).
(The die starts from rest.)

place(odie.startscene(cY) C
tube-inside(shape{ofunnel), s-tuhc-top(shapcgofumcn),
s-tube-bot(shape{ otunnei)))

(The die starts from inside the funnel.)
Prove:

exits(odie,
pseudo-object(ofunnel,s-tube-bot(ofunnel.vup)),

c).
{The die exits the bottom of the funnel )

9. Conclusions

The strengths and limitations of this theory are
evident. On the positive side: Using pure first-order
logic, we give a formal analvsis of a class of problems
beyond the scope of any previous Al theory. Our analvsis
suggests that a qualitative physics for solid objects shouid
include the following features. among others:
® A rich geometrical theory, including topologcai,

metric, and differcntial descriptors. and  speciai

shapes.

® An account of the behavior of physical systems over
extended intervals of time. Such an account should
incorporate constraints placed bv one object on
another; conservation laws. cspecially conservation of
cnergy: ihe grinciple that 3 physical system tends
towards a stable resting point: and 1n sccount of the
net effects of collisions over extended time periods.

® The ability to determine the cxistence of a stable
configuration of objects within quaiitatively desenbed
geometrical constraints.

® The ability to calculate. exactly or qualitatively.
important physical parameters such s the center of

mass. [14 L]
®  The ability to bound the cffect of small perturbations.

On the negative side: We have not shown that thus
tvpe of analysis is extensible to cover all, or most.
ualitative reasoning in this domain. We have not shown
that such an extension would be. in the long run. iny
more parsimonious than simply ¢numerating special cxses.
1s in the rule-based method rejected in section 2. We nave
not shown that any effective computationa methods zan
be developed on the basis of this theory. We cannot me
1 final resolution to these problems unul we ave
impiemented a working system. ind determined the range
of probiems that it is adequate to address.

We olan to hegin impiementation ~v levelopinz
idequate geometric representation and inference syslem.
Ulumately. we want to implement 1 phywcal reasomng
svstem with all the features mentioned above.

We aced the ground. hecause therwise “he avpotheses ire
wonsistent wth the axtioms  The attoms ussert t9at an  nff aite
CATONIC.C TIUSE come 0 an ead '3 2 ~teady cte. Sice we show S
Mere s Wt aieadv state for the fie a1 e tunacl. ae Must pros s :
#:th (e sround ‘o rest on ’
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